

Estero Parkway Roadway Landscape Design Phase-1 Design Alternatives

Focus on Roadway Configuration

- Outside edge of pavement to outside edge of payment including median
- This will become the "base" from which the rest of the project will be designed and built in Phases 2 and 3.

Three Items of Direction

- 1. Lane widths and on-road bike lanes
- 2. Addition of concrete separator to function as "curb and gutter" for drainage
- 3. Addition of roundabouts locations and configurations

Existing Conditions and Design Challenges

Current "Rural" Section

Clear zone illustration

Hinge Point Point where the slope rate changes.

Clear Zone A traversable area that starts at the edge of the traffic lane, includes the shoulder, and extends laterally a sufficient distance to allow a driver to stop or return to the road before encountering a hazard or overturning

Can we just add Type F curb and gutter to the existing roadway?

- No. Survey has shown existing Estero Parkway to be very flat 0% to 0.1% (FDOT min. 0.3%).
- Would produce ponding at edge of pavement.

Current "Rural" Section with Standard Curb and Gutter

Other options to reduce the clear zone:

- Add slotted drains to curb and gutter. Cost \$150 to \$200/lf.
 \$2.5M to \$3.4M for project.
- 2. Alternate concrete separator design.
 - Build arches into separator to allow flow-through drainage.

Median Options

- 1. Add bike lanes to median:
 - While it physically separates bicyclists, it would cause several problems:
 - Conflict with left-turning vehicles.
 - Difficult to get into center lane.
 - Eliminate median plantings.

- 2. Reduce median width to provide additional space for bike lanes:
 - Only gain 3'± on each side.
 - Remove/replace existing curb and gutter at a cost of \$500,000.
 - And, reduce median landscaping.

Conclusion: keep existing median.

Keep Existing Footprint

- 2 12' travel lanes
- 4' paved shoulder
- 28' width total

• 2 – 11' lanes

• 6' buffered bike lane

- 2 10.5' lanes
- 7' buffered bike lane

- 2 10.5' lanes
- Barrier separated bike lane

Remove Pavement and Re-Purpose it Within the Right of Way?

Road Concepts with Roundabouts

Objectives:

- Calm traffic:
 - Drivers along Estero Parkway
 - Drivers using the side streets
 - Pedestrians walking along and, most importantly, crossing the Estero Parkway
 - Bicyclists traveling along and crossing Estero Parkway
- Create a more pedestrian- and bicycle-friendly street
- Beautify Estero Parkway
- Best and most method is by adding roundabouts. The question is, how many and how big?

Following are several options that can be easily modified.

Intersection	Level-of- Service	Average Delay (sec)	95 th Percentile Queue (ft.)	Volume/ Capacity ratio
US-41	E	72.0	3,133 N	1.109
US-41 - Traffic Report Analysis Estero Road Results	D*	41.3	1,553 N**	1.03
Osprey Cove Boulevard	В	10.7	221 W	0.719
Caladesi Drive	В	10.7	221 W	0.719
Cascades Isle Blvd	Α	8.6	124 W	0.598
Cypress View Drive	В	10.2	154 W	0.647
Three Oaks Parkway	A	9.1	119 S	0.529
Ben Hill Griffin Parkway	В	15.8	426 N	0.785

95th Percentile Level-of-Intersection **Average Delay** Volume/ Service (sec) Queue (ft.) **Capacity** ratio **US-41** E* 59.2 2,804 1.018 Osprey Cove A 4.7 49 W 0.311 Boulevard 4.7 49 W 0.311 Caladesi Drive A Cascades A 5.5 62 W 0.381 129 W 0.399 Cypress View Drive A 8.6 Three Oaks Parkway A 9.1 119 S 0.529 Ben Hill Griffin В 15.8 426 N 0.785 Parkway

*When roundabouts are over-designed, they can cause, and we often see, an increase in crashes due to poor driver behavior.

2-Lane Option

4-Lane

Option

Two-Lane Designs

Four-Lane Designs

Roundabouts are not Traffic Circles Princeton, NY

New Jersey Traffic Circle Conversions to Roundabouts

New Roundabouts in New Jersey

Safety of Roundabout v. Signals

- Signalized intersections comprise
 25% of road network but have 20%
 of all crashes
- Red light cameras can reduce rightangle crashes but increase rear-end crashes
- Most dangerous and severe crashes are the right angle (run the red light) and the left turn
- Crashes typically increase when signals are installed – they are not a safety treatment - FHWA

- Roundabouts reduce crash severity and possible all crashes
- Two-lane roundabouts typically have more crashes than one-lane roundabouts – more conflict points
- Overdesign may cause additional crashes.

Road Capacity

Road capacity is determined by intersection with the least capacity, not the number of lanes

New concept - Fat intersections/Skinny Roads

Many lanes at signals are for storage

US-41 at 6 mile Cypress Parkway

US 41 at Corkscrew Road

Cattlemen Road, Sarasota, FL

La Jolla Blvd, San Diego – 5 to 2 lanes, 21,000 vpd Estero Parkway 18,8700

From 8 to 4 lanes, with 3 signalized intersections

To a 6 leg, 2-lane roundabout

Clearwater Beach

58,400 vehicles, 6,000 pedestrians, 350 bicyclists in one day

Williams Road at Via Coconut

Questions/Comments

Village with a Vision...

